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Abstract. We study various classical solutions of the baby-Skyrmion model in (2+1) dimensions. We point
out the existence of higher energy states, interpret them as resonances of Skyrmions and anti-Skyrmions
and study their decays. Most of the discussion involves a highly exited Skyrmion-like state with winding
number one which decays into an ordinary Skyrmion and a Skyrmion-anti-Skyrmion pair. We also study
wave-like solutions of the model and show that some of such solutions can be constructed from the solutions
of the sine-Gordon equation. We also show that the baby-Skyrmion model has non-topological stationary
solutions. We study their interactions with Skyrmions.

1 Introduction

In previous papers by two of us (BP and WJZ) [1–3] some
hedgehog-like solutions of the so called baby-Skyrmion
model were studied. It was shown there that the model
has soliton-like topologically stable static solutions (called
baby-Skyrmions) and that these solitons can form bound
states. The interaction between the solitons was studied
in detail and it was shown that the long distance force
between 2 baby-Skyrmions depends on their relative ori-
entation.

To construct these soliton solutions, one must use a
radially symmetric ansatz (hedgehog configuration) and
reduce the equation for the soliton to an ordinary dif-
ferential equation. This equation admits more solutions
than those described in [2] and [3] and, as we will show,
they correspond to exited states or resonances made out
of both Skyrmions and anti-Skyrmions. We will also show
that the model admits some solutions in the form of non-
linear waves.

The (2 + 1)-dimensional baby-Skyrmion field theory
model is described by the Lagrangian density

L = Fπ
(1
2
∂αφ∂

αφ− k2

4
(∂αφ× ∂βφ)(∂αφ× ∂βφ)

−µ2(1− nφ)
)
. (1)

Here φ ≡ (φ1, φ2, φ3) denotes a triplet of scalar real
fields which satisfy the constraint φ2 = 1; (∂α∂α = ∂t∂

t−
∂i∂

i). As mentioned in [1–3] the first term in (1) is the
familiar Lagrangian density of the pure S2 σ model. The
second term, fourth order in derivatives, is the (2+1) di-

1 also at ITEP, Moscow, Russia

mensional analogue of the Skyrme-term of the three-di-
mensional Skyrme-model [4]. The last term is often re-
ferred to as a potential term. The last two terms in the
Lagrangian (1) are added to guarantee the stability of a
Skyrmion [5].

The vector n = (0, 0, 1) and hence the potential term
violates the O(3)-rotational iso-invariance of the theory.
The state φ3 ≡ 1 is the vacuum state of the theory. As
in [1,2] we fix our units of energy and length by setting
Fπ = k = 1 and choose µ2 = 0.1 for our numerical calcu-
lations. The choice µ2 = 0.1 sets the scale of the energy
distribution for a basic Skyrmion.

As usual we are interested mainly in field configura-
tions for which the potential energy at infinity vanishes as
only they can describe field configurations with finite total
energy. Therefore we look for solutions of the equation of
motion for the field φ which satisfies

lim|x|→∞φ(x, t) = n (2)

for all t. This condition formally compactifies the physical
space to a 2-sphere S2

ph and so all maps from S2
ph to S2

iso
are characterised by the integer-valued degree of this map
(the topological charge).

The analytical formula for this degree is

deg[φ] =
1
4π

∫
φ · (∂1φ× ∂2φ)d2x. (3)

This degree is a homotopy invariant of the field φ and
so it is conserved during the time evolution.

The Euler-Lagrange equation for the Lagrangian L (1)
is

∂α(φ× ∂αφ− ∂βφ (∂βφ · φ× ∂αφ)) = µ2φ× n. (4)

One simple solution of (4) is given by φ(x, t) = n.
This solution is of degree zero and describes the vacuum
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configuration. Another simple solution of (1.4) is evidently
φ = −n. It is also of degree zero and may be considered
as a false vacuum configuration.

2 Static Skyrmion solutions

Some static solutions of the equation of motion (3) were
discussed in [1,2]. An important class of static solutions
of the equation of motion consists of fields which are in-
variant under the group of simultaneous spatial rotations
by an angle α ∈ [0, 2π] and iso-rotations by −nα, where
n is a non-zero integer. Such fields are of the form

φ(x) =

( sin f(r) cos(nθ)
sin f(r) sin(nθ)

cos f(r)

)
, (5)

where (r, θ) are polar coordinates in the (x, y)-plane and
f is a function which satisfies certain boundary conditions
which will be specified below. Such fields are analogues of
the hedgehog field of the Skyrme model and were studied
in [3] for different values of µ2.

The function f(r), the analogue of the profile function
of the Skyrme model, has to satisfy

f(0) = mπ,m ∈ Z (6)

for the field (5) to be regular at the origin. To satisfy the
boundary condition (2) we set

limr→∞f(r) = 0. (7)

Then solutions of the equation of motion which satisfy (6)
and (7) describe fields for which the total energy is finite.
Moreover, the degree of the fields (5) is

deg[φ] = [cos f(∞)− cos f(0)]
n

2
. (8)

For fields which satisfy the boundary conditions (6)
and (7) and which thus correspond to finite energy con-
figurations, we get from (8)

deg[φ] = [1− (−1)m]
n

2
. (9)

The fields of the form (5) which are stationary points
of the static energy functional V , the time independent
part of L in (1), must satisfy the Euler-Lagrange equation
for f

(r +
n2 sin2 f

r
)f ′′

+(1− n2 sin2 f

r2 +
n2f ′ sin f cos f

r
)f ′

−n2 sin f cos f
r

− rµ2 sin f = 0. (10)

In [1, 2] it was shown that the solutions of (10) for
n = 1, 2 and m = 1, correspond to the absolute minima
of the energy functional of degree 1 and 2 respectively.

Any field obtained by translating and iso-rotating the so-
lution corresponding to n = m = 1 was called a baby
Skyrmion. As this field configuration has a topological
charge deg[φ] = 1 we call it a “baryon” and denote it
by the symbol B. A solution corresponding to n = −1
and m = 1 is then an anti-Skyrmion or an antibaryon B̄.

Clearly, there exist also solutions of the equation of
motion which satisfy the boundary conditions (6) at the
origin but which, at infinity, behave as

limr→∞f(r) = lπ .
l ∈ Z .

(11)

Such fields, if l is odd, differ from B-Skyrmions in that
they describe solutions with finite energies. As we are in-
terested in fields of finite energy, in this paper, we restrict
our attention to B-Skyrmions.

It is worth mentioning that the asymptotic behaviour
of B-Skyrmions is given by [2]:

f(r) ∼ Kn(µr) ∼r→∞

√
1

2πµr
e−µr (12)

where Kn(x) is the modified Bessel function.
We have solved (10) for different values of n and m

using a shooting method with the appropriate boundary
condition (6, 7). We have determined the profile function
f(r) and the energy and topological density profiles for
each of these solutions.

In Fig. 1, we show the profile functions f(r) for differ-
ent values of n and m.

The total energies for our solutions are as follows:

n \ m 1 2 3 4
1 1.5642 5.011 10.030 16.492
2 2.9359 7.725 14.185 22.233
3 4.4698 10.555 18.350 27.819
4 6.1145 13.465 22.633 33.395

When m = 1, the topological charge is given by n, and
each configuration is a superposition of n Skyrmions. We
know from [2] that only the first two are stable. Figure 2
shows the profiles of the energy and of the topological
density of the states n = 1 and n = 2.

When m = 2, the topological charge is 0 and, as can
be seen from Fig. 3, these configurations correspond to a
superposition of n Skyrmions and n anti-Skyrmions where
the Skyrmions form a ring surrounding the anti-Skyrmion
at the centre. We have integrated separately both the posi-
tive and negative parts of the topological charge, and have
found them to be n and −n respectively, thus justifying
our interpretation.

When m = 3, the topological charge is given by n, and
each configuration is a superposition of 2n Skyrmions and
n anti-Skyrmions (Fig. 4). The configuration is made of 3
layers, with n Skyrmions at the centre, n anti-Skyrmions
in the middle, and n Skyrmions in the outside ring.

Note that when m is larger than 1 the energy of the
configuration is larger than the energy of nm baby Skyr-
mions. This indicates that such configurations are unsta-
ble and we will now analyse their decay modes.
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Fig. 1. a: Profiles for the hedgehog solutions: n = 1,m = 1, 2, 3, 4 b: Profiles for the hedgehog solutions: n = 2,m = 1, 2, 3, 4
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Fig. 2. a: Energy and topological charge density for the hedgehog solution: n = 1,m = 1 b: Energy and topological charge
density for the hedgehog solution: n = 2,m = 1
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Fig. 3. a: Energy and topological charge density for the hedgehog solution: n = 1,m = 2 b: Energy and topological charge
density for the hedgehog solution: n = 2,m = 2
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Fig. 4. a: Energy and topological charge density for the hedgehog solution: n = 1,m = 3 b: Energy and topological charge
density for the hedgehog solution: n = 2,m = 3

3 Exited meson M1,2(n = 1;m = 2)

Let us look first at the field which corresponds to n =
1, m = 2. From (8) we see that the topological charge of
this field configuration is zero. So we can call this state,
a “meson” or a coherent “meson cloud”. We note from
Fig. 3a that, like a B Skyrmion, this solution corresponds
to a radially symmetric extended configuration with the
maximum of the energy density at the origin (r = 0).

As the total energy (5.011) exceeds the sum of the
masses of a B-Skyrmion and a B̄-Skyrmion (2× 1.5642),
this configuration is unstable.

The distribution of the topological charge density
shows more structure (Fig. 3a). We note that the topo-
logical charge density is negative for small r and that it
changes sign at r = rcr = 2. At this point the profile func-
tion f(rcr) = π, thus the solution corresponding to the
M1,2 state looks like a Skyrmion surrounded by an anti-
Skyrmion field. Of course the total topological charge is
zero. We see that the solution still looks like an extended
but localised configuration. However, although the topo-
logical charge density suggests that the Skyrmion is at the
origin the profile function there is given by f = 2π and
so, from this point of view, resembles more the vacuum
than a Skyrmion. This suggests a possible interpretation of
the M1,2 state in terms of Skyrmions and anti-Skyrmions.
Whatever the interpretation, the state is mesonic in na-
ture. Moreover, looking at the field configuration we note
that most of its changes takes place around those points
in the (x, y) plane where r = rcr i.e. where f = π. It
is remarkable that everywhere along this circle φ3 = −1.
This circle is actually the region of instability when the
solution M1,2 is excited by a non-radial perturbation of
small amplitude.

In fact, it is not difficult to demonstrate that at each
point on the circle r = rcr one can create “hedgehog-like”
extended objects using only infinitesimal perturbations.
Of course, if these extended objects were to correspond to
Skyrmions and anti-Skyrmions then to conserve the topo-

logical charge they will have to be created in pairs and
we would expect them to appear as soon as we perturb
the initial configuration. To check for such a behaviour
we have perturbed the initial configuration corresponding
to the M1,2-state. Our perturbation was in the form of
small excess of kinetic energy centered around two points
in the (x,y)-plane chosen symmetrically with respect to
r = 0. We have found that, indeed, the state split into
a Skyrmion and anti-Skyrmion pair of the B-type. Their
relative orientation was such that the force between them
was repulsive. After their creation the Skyrmion and the
anti-Skyrmion moved in opposite directions from the cen-
tre.

We then experimented with distorting the initial state
by different perturbations and we observed different decay
modes. When the applied perturbation was not symmetric
with respect to r = 0 (but was close to being symmetri-
cal) the M1,2 state decayed into a Skyrmion and an anti-
Skyrmion, which then rotated in their internal space so
that their relative orientation made them to attract each
other. They then collided into each other and decayed into
waves.

We thus conclude that the solution M1,2 of (10) is in-
deed a saddle point in the space of field configurations.
The state can be thought of as a resonance of a Skyrmion
and an anti-Skyrmion and it has different decay modes
when perturbed. It decays either into a BB̄-pair or into
light “mesons”.

It would be interesting to see whether it is possible to
create the M1,2 state in a head-on collision of a Skyrmion
and an anti-Skyrmion. We are planning to come back to
this question in a future paper.

4 Exited B1,3 baryon (n = 1, m = 3)

This is a baryon-type state as its topological charge is one.
The profiles of the energy and of the topological charge
densities for this state are shown in Fig. 4a. Looking at
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Fig. 5. Topological charge density for the M2,2 → B + B̄ +
B + B̄ decay mode

the density of the topological charge we see that this state
may be considered as the usual B-Skyrmion surrounded
by an anti-Skyrmion and a further Skyrmion ring. The
configuration has an energy larger than the energy of its
constituents and is thus unstable.

We have performed several simulations looking at the
decay products of this state. When we used a perturba-
tion symmetric with respect to the origin the configuration
decayed into 2 Skyrmions and 1 anti-Skyrmion, the anti-
Skyrmion staying at the origin, while the two Skyrmions
moved in opposite directions. When the perturbation was
not symmetric, the Skyrmions and the anti-Skyrmion were
able to change their relative orientations and one of the
Skyrmions collided with the anti-Skyrmion and decayed
into waves.

5 Mesons made from dibaryons
and anti-dibaryons

Let us now discuss various properties and decay modes of
exited meson-like states made out of dibaryons (a bound
state of 2 B-Skyrmions) and antidibaryons. We will con-
centrate our attention on the n = 2 and m = 2 state
but our discussion generalises easily to other states. The
topological charge of the (n = 2, m = 2) configuration
(ie its baryon number) is zero, so this configuration is a
meson-like state from the point of view of our classifica-
tion. As n = 2 the configuration looks like a dibaryon
near the origin, i.e. near r = 0. From Fig. 3b, we see that
it corresponds to a dibaryon at the origin surrounded by
an anti-dibaryon ring. The border between these two re-
gions of opposite topological charge is, again, very well
defined and is situated along the circle of radius rcr = 3,
(f(rcr) = π). So this ring is again the region of instability.
Applying different types of perturbations to our (n = 2,
m = 2) solution, we have observed three different decay
modes for this state:

M2,2 →
{
B + B̄ +B + B̄
B + B̄ + waves
waves

. (13)

The picture of the energy density for the first decay
modes is shown in Fig. 5.

6 Other exited mesonic and baryonic states

i) Let us look first at the state (n = 1,m = 4). This
state, again, is mesonic with deg[φ] = 0. The energy
and topological charge profiles are shown in Fig. 6. The
state is more complicated as its energy density exhibits
additional maxima and minima. In fact, the state looks
as if it were a coherent state of Skyrmions and anti-
Skyrmions, with rings of different radia occupied by
fields of alternating topological charge. This is clearly
seen from the topological charge density plots; more-
over, the total topological charge in each ring is +1,
−1, +1 and −1 respectively (going out from r = 0).
Thus we denote this state as M1,4 meson.

ii) Another interesting state is that of M2,3 (n = 2,m =
3). Its topological charge is 2. Hence this state can be
thought of as an exited state of the dibaryon M2,1. Its
energy is clearly quite large and the state represents a
coherent mixture of 4 Skyrmions and 2 anti-Syrmions
and so it can decay into different channels. One ex-
ample of its decay mode is shown in Fig. 7. We see
in this picture that the decay products consist of two
outgoing Skyrmions and two anti-Skyrmions with the
remaining 2 Skyrmions at rest close to the origin. The
fact that the decay products involve one di-Skyrmion
at the origin (slightly excited) is due to the attraction
between two Skyrmions, as mass(M2,1) < 2 mass(B),
see our table in Sect. 2.

iii) Another interesting state is M2,4 which corresponds
to (n = 2,m = 4) and, as such, is a highly excited
meson state. Its energy and topological charge profiles
are shown in Fig. 6b.

Clearly, the list of new solutions may be continued fur-
ther by taking larger values of n and m. Of course, hav-
ing calculated some of their profile functions we see that
as one increases m their energies increase (quite rapidly).
All these higher energy states can be treated as coherent
states of some number of Skyrmions and anti-Skyrmions
and are unstable. Under suitable perturbations they will
decay into various channels involving Skyrmions and anti-
Skyrmions with some Skyrmions and anti-Skyrmions an-
nihilating into pure waves.

7 Plane wave solutions

Let us now look at wave-like solutions of our model. Re-
call that such wave-like solutions have already been stud-
ied in [6,7] for a slightly different version of a “skyrme-
like” (2+1) dimensional model (the potential term of that
model was different.)

What type of waves can we find for the Lagrangian
in the form (1)? To look for plane wave-like solutions,
we seek solutions which do not depend on one variable,
say y. However, as soon as we impose this condition we
note that the Skyrme-like term vanishes for these field
configurations. So the discussion is not that difficult and
can be performed analytically.
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Fig. 6. a: Energy and Topological charge density for the hedgehog solution: n = 1,m = 4 b: Energy and Topological charge
density for the hedgehog solution: n = 2,m = 4

Fig. 7. Topological charge density for the M2,3 → B + B̄ +
B + B̄ +B +B decay mode

First, we look for solutions of the equation of motion
for the field φ in the form:

φ = (sin f cosψ, sin f sinψ, cos f), (14)

where f = f(x, t) and ψ = ψ(x, t). In terms of f and ψ
the Lagrangian takes the form

L = (1/2)
∫

d2x (∂µf∂µf

+((1− cos(2f))/2)∂µψ∂µψ − µ2(1− cos(f))
)
. (15)

To go further we consider the case when the phase ψ
is constant. In this case the field f satisfies

∂µ∂
µf + µ2 sin(f) = 0, (16)

which is the sine-Gordon equation. So we see that when
ψ = const the wave solutions of the Lagrangian (1) are
given by the solutions of the sine-Gordon equation.

Moreover, solutions of (16) with small amplitude may
be considered as ordinary plane waves with the dispersion
relation given by

ω2 = µ2 + k2. (17)
Of all finite energy solutions of (16) (one-dimensional

case) the most important, and perhaps the best studied,
is the solution of the kink type:

f(x, t) = 4 atan
(
exp

[
− µ(

x− x0 − vt√
(1− v2)

)
])
. (18)

When translated to our case we note that when x
changes from −∞ to +∞, the vector φ moves along the
meridional cross-section of the S2

iso-sphere and returns to
the same point. Moreover, this is true for any fixed time
t.

Another solution of (16), called breather, is also well
known and has been studied by many people. Its form
is [8]

f(x, t) = 4atan
( (1− ω2)1/2

ω

sin(ω(t− t0))
cosh((1− ω2)1/2(x− x0))

)
(19)

where ω is the frequency of the internal breather oscilla-
tions.

These 2 types of solitonic waves are infinite front lines
(the solutions depend only on one spatial variable, x). Un-
fortunately, once imbedded into S2, the target space for
our model, the extra degrees of freedom make these waves
unstable. For the kink solution this is not surprising as
the “loop” around the meridian can easily “slip” on one
side of the sphere, thus decreasing the potential energy.

To see this, let us take the configuration

φ(x) =

( cosα sinf
sinα cosα (1− cosf)
1− cos2α (1− cosf)

)
, (20)

where f is given by (18) with v set to 0, and where α
is a function which depends only on y and which goes
to 0 when y goes to infinity. This configuration describes
the kink (18, 14) perturbed locally in x and y, and it
“displaces” the kink from the meridian of the 2-sphere
onto a loop of a smaller radius on S2. The energy density
for this static configuration is given by

E =
∫

dxdy
[1
2
[
cos2αf2

x + α2
y(sin

2αsin2f + (1− cosf)2)

+k2f2
xα

2
y(1− cosf)2cos2α

]
+µ2cos2α(1− cosf)

]
. (21)
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To prove that for some appropriate choice of α, the energy
decreases, we compute the change of energy induced by a
non-zero α

δE = E(α = 0)− E(α)

=
∫

dxdy
[
2sin2 f

2
[
µ2(sin2α− k2α2

y(1− cosf)2cosα)

−α2
y(1 + sin2αcos

f

2
)
]
+ µ2sin2α(1− cosf)

]
≥
∫

dxdy
[
2sin2 f

2
[
µ2(sin2α− k2α2

ycosα)

−α2
y(1 + sin2α)

]
+ µ2sin2α(1− cosf)

]
(22)

where we have used the fact that for (18) fx = 2µsin(f/2).
Given α(y) satisfying the asymptotic behaviour imposed,
we can always stretch it by performing the dilation y → ay
to make αy small enough to make the two negative terms
in (22) smaller than the positive terms. This proves the
instability of the sin-Gordon kink wave when imbedded
into the S2 model.

We have performed some numerical simulations for
both types of waves and have indeed observed their insta-
bility. In both cases, as soon as some region of the wave
is perturbed, the wave collapses around this point, emit-
ting radiation. The collapse front then propagates rapidly
along the solitonic wave destroying it completely.

In our previous work [7], we have studied the scattering
properties of plane waves and Skyrmions. The Skyrmions
studied in [7] were different (the potential was different) so
we have repeated our analysis for the model studied here
and have found no major difference. Like in the previous
case, the Skyrmion absorbs a section of the wave and starts
moving after the collision.

We have also studied the scattering between a Skyrmion
and the sine-Gordon front waves. We observed that when
the Skyrmion is close to a sine-Gordon wave (breather or
kink) it triggers the wave collapse and, as a result, there
is no real scattering between these two objects.

While performing simulations with large amplitude
breather waves we have observed the formation of a ra-
dially symmetric breather-like soliton. This solution looks
very similar to the pulsons observed in [9]. We discuss
some of its properties in the next section.

8 Non-topological Solitons

In the previous section we have described our studies of
waves in the baby-Skyrmion model in which we observed
that the plane wave solutions which are given by the solu-
tions of the (1+1) dimensional sine-Gordon equation are
unstable.

However, we when we looked at the decay of some
breather front waves we encountered something rather un-
expected. Instead of decaying into waves that dissipate
like kink solutions they produced a radially symmetric
breather-like field configuration which appeared to be rel-
atively stable. By looking at the time evolution of this field

configuration, as produced by our simulation, we were able
to conclude that:

– the field configuration is radially symmetric.
– up to a global rotation of S2, the solution “lives” in

the φ1, φ3 plane of the target space (S2).

To study this field configuration further we make the
following ansatz:

φ = (sinf(r, t), 0, cosf(r, t)). (23)

The lagrangian density then becomes

L = π

∫
dr r

(
∂tf∂tf − ∂rf∂rf − µ2(1− cos(f))

)
. (24)

and the equation reduces to the radial sine-Gordon equa-
tion:

ftt − frr − fr
r

+ µ2sin(f) = 0. (25)

This equation has already been studied in [9], where it
was shown that it has time dependent solutions similar to
a breather, but which radiate their energy and slowly die
out. The authors of [9] decided to call such configurations
pulsons.

In [10] we have also shown that there exist stable time
dependent solutions. The radial field configurations of (25)
radiate relatively quickly when their amplitude of oscilla-
tion is relatively small, that is when the value of f never
becomes larger than π/2 at the origin (these are the pul-
sons studied in [9].) When the amplitude of oscillation is
larger than π/2 the configuration radiates its energy very
slowly and asymptotically reduces the amplitude of oscil-
lation to π/2 with a period of oscillation T ∼ 20.5 (when
µ2 = 0.1). We have decided to call this asymptotic con-
figuration pseudo-breather. The time dependant solutions
with amplitude larger than π/2 can then be considered
as excited pseudo-breathers. By trial and error we have
found that

f(r, 0) = 4 atan
(
C exp

(− 2
π

µr

K
atan(

µr

K
)
))

∂f

∂t
(r, 0) = 0 (26)

with K = 10 and C = tan(π/8) is a good initial condition
for this metastable pseudo-breather solution.

Our numerical study of the pseudo-breather shows that
it is metastable; even a small perturbation is sufficient to
reduce its amplitude of oscillation and transform it into
a pulson. On the other hand, the exited pseudo-breathers
are relatively stable: the larger the excitation energy, the
larger the perturbation needed to transform them into a
pulson.

As in the case of plane wave solutions we have to check
that once they are imbedded into S2 they are still sta-
ble. We have indeed checked this numerically and we have
found that the solution described by (23) and (25) is in-
deed stable in the S2 model.

The energy of this new breather-like solution is given
by

EPB ∼ 3.97
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Fig. 8. a: Pseudo-Breather scattering trajectory. Impact Parameter: 10, v = 0.2 b: Pseudo-Breather scattering trajectory.
Impact Parameter: 15, v = 0.2

which means that it is 2.5 heavier than the baby-Skyrmion.
Moreover, its topological charge density is identically zero
but it has enough energy to decay into a Skyrmion anti-
Skyrmion pair. In what follows we shall refer to these field
configurations as pseudo-breathers.

In practice, it is very difficult to have a field configura-
tion of a pseudo-breather. However, we can find approx-
imate field configurations which still radiate energy and
asymptotically reach the stable (or perhaps only meta-
stable) configuration configuration of the pseudo-breather.
The excess of energy over the final configuration can then
be seen as an excitation energy which is slowly radiated
away. During any scattering process solitons tend to ex-
change or radiate some energy. When the excitation en-
ergy is large enough, the outgoing pseudo-breather-like
configuration may have enough energy to evolve into the
stable pseudo-breather field; otherwise, it ends up with
less energy than the metastable configuration and pro-
gressively dies out.

The scattering properties of pseudo-breathers are quite
interesting. When the pseudo-breathers are imbedded into
the baby-Skyrmion model the field configurations have an
extra degree of freedom corresponding to their orienta-
tion inside the φ1, φ2 plane. When two pseudo-breathers
are set at rest near each other, the force between them de-
pends very much on their relative orientation: when they
are parallel to each other and oscillate in phase, they at-
tract each other, overlap and form a new structure which
appears to be an exited pseudo-breather. This pseudo-
breather then slowly radiates away its energy. The non-
topological nature of pseudo-breathers means that they
can indeed merge to form a new structure of the same
type.

If the two pseudo-breathers are anti parallel, i.e. if
they oscillate completely out of phase, then the force be-
tween them is repulsive. When the two pseudo-breathers
have a different orientation they slowly rotate themselves
until they become parallel; then they move towards each
other and form an exited pseudo-breather structure.

When two pseudo-breathers are sent towards each other
with some kinetic energy, the scattering becomes more in-
volved. Depending on the initial speed or the scattering
impact parameter, they either merge into a single pseudo-
breather or they undergo a forward scattering. The details
of these scattering properties are given in [10]. In Fig. 8
we show two trajectories corresponding to the position of
the local maxima of the energy density seen in two sim-
ulations. The arrows indicate the direction of movement.
When the two pseudo-breathers overlap, their energy den-
sity exhibits quite a few local maxima, hence the circles
observed at the centers of both pictures. For both scatter-
ings the initial speed was 0.2, the only difference between
them was in the values of the initial impact parameter.

9 Pseudo-Breather-Skyrmion scattering

As we have seen, the baby-Skyrmion model has two differ-
ent types of extended solutions. The Skyrmions are topo-
logical solitons which are very stable, while the pseudo-
breathers are time-periodic solitons which can slowly de-
cay if they are perturbed too much. It is very unusual
to have a model that exhibits two such different station-
ary structures and so it is interesting to analyse how they
interact with each other.

When a Skyrmion and a pseudo-breather are put at
rest next to each other the overall interaction between
them makes the Skyrmion slowly move away from the
pseudo-breather-like configuration while the pseudo-brea-
ther looses some of its energy faster than when it is placed
there by itself.

To scatter a Skyrmion with a pseudo-breather we have
placed the pseudo-breather soliton at rest, and we have
sent the Skyrmion towards it. We have performed this
scattering for different orientations of the pseudo-breather,
for different values of the impact parameter and for a few
different speeds. In each case, the pseudo-breather was
initially located at the origin while the Skyrmion always
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Fig. 9. Skyrmion and pseudo-breather at rest

started from (x0, y0) where x0 is the initial position along
the x axis and y0 is the impact parameter. The pseudo-
breather was oscillating in the (φ1, φ2) plane along the
direction (cos(α), sin(α)).

In Fig. 9 we show the initial condition corresponding
to a baby-Skyrmion next to a pseudo-breather. We note
that the Skyrmion is much more spiky than the breather.

Our numerical results are summarised in the following
4 tables.

Table 1.a. Impact parameter and speed dependance of the
scattering angle (α = 0, x0 = −20)

v \ y0 15 10 7.5 5 3.5 2.5 1.25
0.2 5 18 31 39 58 67 −108
0.3 6 26 16 15 36 35 −24
0.4 4 7 11 0 −9 −8

Table 1.b. Impact parameter and speed dependance of the
scattering angle (α = π/2, x0 = −20)

v \ y0 15 10 7.5 5 3.5 2.5 1.25
0.2 8 19 27 30 21 21 90
0.3 6 16 24 23 21 29 23
0.4 5 20 21 20 18 19 4

Table 1.c. Impact parameter and speed dependance of the
scattering angle (α = π/4, x0 = −20)

v \ y0 15 10 7.5 5 3.5 2.5 1.25
0.2 7 18 29 32 52 62 −166
0.3 7 14 15 2.5 22 45 −27
0.4 3 8 8 15 14 24 −43

Table 2. Scattering angle as a function of the initial distance
(α = π/2, y0 = 2.5)
v \ x0 15.2 16.2 17.2 18.2 19.2 20.2
0.2 38 33 33 38 31 21
0.4 15 16 17 20 22 19

The amount of energy lost by the pseudo-breather dur-
ing the scattering is larger when the overlap between the
Skyrmion and the breather, both in time and space, in-
creases. In some cases the pseudo-breather is completely
destroyed by the collision. The oscillation of the pseudo-
breather makes the interaction time dependent, and, as
a result, we are unfortunately unable to extract a simple
pattern from the tables of the scattering angles.

10 Conclusions

We have shown that the baby-Skyrmion model has many
interesting classical solutions in addition to the Skyrmion
solitons. The first class of solutions describe exited states
of Skyrmions and anti-Skyrmions which are unstable with
respect to perturbations.

The second class of solutions involves non-topological
stationary stationary field configurations which are peri-
odic in time. They are relatively stable but, as they are
nontopological in nature, they can be destroyed by suffi-
ciently large perturbations.
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